Il Centrismo del Nastro di Möbius è la convinzione che possiamo raggiungere il vero centrismo solo se ci muoviamo intorno alla bussola in un anello, ogni anno. È considerata come una teoria del ferro di cavallo iper evoluta.

Le superfici ordinarie, ossia le superfici che nella vita quotidiana siamo abituati ad osservare, hanno sempre due facce, per cui è sempre possibile percorrerne idealmente una senza mai raggiungere l'altra, se non attraversando una linea di demarcazione costituita da uno spigolo o bucando la superficie.

Si pensi ad esempio alla sfera, all'anello o al cilindro. Per queste superfici è possibile stabilire convenzionalmente un lato "superiore" o "inferiore", oppure "interno" o "esterno". Nel caso del nastro di Möbius, invece, tale principio viene a mancare: esiste un solo lato e un solo bordo.

Dopo aver percorso un giro, ci si trova dalla parte opposta. Solo dopo averne percorsi due ci ritroviamo sul lato iniziale. Quindi si potrebbe passare da una superficie a quella "dietro" senza attraversare il nastro e senza saltare il bordo ma semplicemente camminando a lungo.

Un nastro di Möbius può essere realizzato partendo da una striscia rettangolare ed unendone i lati corti dopo aver impresso ad uno di essi mezzo giro di torsione (180°). A questo punto se si percorre il nastro con una matita, partendo da un punto casuale, si noterà che la traccia si snoda sull'intera superficie del nastro, che è quindi unica. Essendo una superficie rigata, per ogni punto sul nastro passa almeno una retta che giace sulla superficie del nastro. Sono superfici rigate il piano, il cilindro e il cono e altre, mentre non sono superfici rigate la sfera, l'ellissoide e molte altre. Nella costruzione, si ottiene un nastro di Möbius imprimendo al lato corto n mezzi giri di torsione, con n dispari (nel nastro di Möbius "classico", n=1). Con n pari si ottiene una figura topologica diversa, questa volta orientabile, chiamata anello, equivalente ad una corona circolare.

Tagliando il nastro a metà parallelamente al bordo, si ottiene un altro nastro però con una torsione intera, due bordi e due superfici diverse, quindi orientabile. La cosa interessante è che i due bordi separati dalle forbici rimangono un solo bordo, quindi la figura viene completamente tagliata a metà, ma rimane attaccata; tagliando ancora a metà il secondo si ottengono due nastri con torsione intera uno dentro l'altro. Tagliando il nastro a un terzo della sua larghezza si possono fare due giri con le forbici e si ottengono due nastri concatenati, uno grande la metà dell'altro, dove quello piccolo è ancora un nastro di Möbius, con mezza torsione, mentre quello grande ha una torsione intera.

In matematica, e più precisamente in topologia, il nastro di Möbius è un esempio di superficie non orientabile e di superficie rigata. Trae il suo nome dal matematico tedesco August Ferdinand Möbius (1790-1868), che fu il primo a considerare la possibilità di costruzione di figure topologiche non orientabili.

Esemplare come in meccanica, le cinghie di trasmissione possono utilizzare il nastro di Möbius per distribuire l'usura sulle due facce (e quindi durare di più). Un esempio di questa applicazione è rappresentato nelle vecchie trebbiatrici, che ricevevano il moto da un trattore posto ad alcuni metri tramite una cinghia con le facce incrociate. Nei banchi di taglio utilizzati nella lavorazione degli schiumati poliuretanici le lame sono a forma di nastro di Möbius. Questo accorgimento consente di raddoppiare la lunghezza del filo di taglio della lama e, di conseguenza, i tempi di intervallo fra una affilatura e l'altra, risultandone dimezzata, a parità di impiego, l'usura del filo stesso.


🌱 Vuoi supportarci? Visita il nostro eco-shop:

👁️ Guarda anche